
PNP SILICON PLANAR EPITAXIAL HIGH VOLTAGE VIDEO TRANSISTORS High Voltage Video Amplifier

Darlington Transistor

* Power Dissipation: PD=625mW

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25 $^{\circ}\text{C}$ ambient temperature unless otherwise specified.

Absolute Maximum Ratings TA=25 °C unless otherwise noted

DESCRIPTION	SYMBOL	BF491	BF492	BF493	UNITS	
Collector-Emitter Voltage	VCEO	200	250	300	Volts	
Collector Base Voltage	VCBO	200	250	300	Volts	
Emitter Base Voltage	VEBO	6	8	8	Volts	
Collector Current Continuous	Ic	500				
Total Device Dissipation @ Ta=25°C Derate Above 25°C	PD	625 1.2				
Total Device Dissipation @ Tc=25°C Derate Above 25°C	PD	1500 12				
Operating And Storage Junction Temperature Range	Тj, Тsтg	-55 to + 150				

ELECTRICAL CHARACTERISTICS TA=25 °C unless otherwise noted

ELLOTRIONE OTTAINAOTERIOTIOO TA-20		·				
DESCRIPTION	Test Condition	SYMBOL	BF491	BF492	BF493	UNITS
Collector-Base Breakdown Voltage	Ic=0.1mA,IE=0	ВУсво	>200	>250	>300	Volts
Collector-Emitter Breakdown Voltage	Ic=1mA,IB=0	BVceo*	>200	>250	>300	Volts
Emitter-Base Breakdown Voltage	IE=100uA,Ic=0	ВУЕВО	>6.0	>8.0	>8.0	Volts
Collector Cutoff Current	VcB=160V,IE=0 VcB=200V,IE=0	Ісво	<0.1	<0.1	<0.1	uA
Emitter Cutoff Current	VEB=4.0V,IC=0 VEB=6.0V,IC=0	IEBO	<0.1	<0.1	<0.1	uA
DC Current Gain	IC=1mA,VCE=10V IC=10mA,VCE=10V	hfE	>25 >40	>25 >40	>25 >40	
Collector-Emitter Saturation Voltage	IC=20mA,IB=2mA	VCE(sat)	<2	<2	<2	Volts
Base-Emitter Saturation Voltage	IC=20mA,IB=2mA	VBE(sat)	<2	<2	<2	Volts

ELECTRICAL CHARACTERISTICS (T_a=25°C unless specified otherwise)

DESCRIPTION	SYMBOL	TEST CONDITION	BF491	BF492	BF493	UNITS
Current Gain-Bandwidth Product	f_{T}	I _C =10mA, V _{CE} =20V, f=20MHz	>50	>50	>50	MHz
Feedback Capacitance	C_{re}	V_{CB} =100V, f=1MHz, Ie=0	<2	<2	<2	pF

^{*}Pulse Condition: = Width \leq 300us, Duty Cycle \leq 2.0%.



Figure 1. DC Current Gain

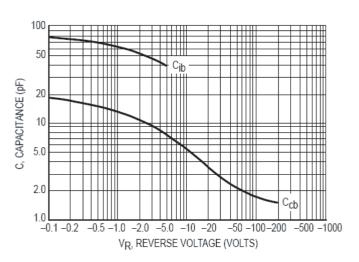


Figure 2. Capacitances

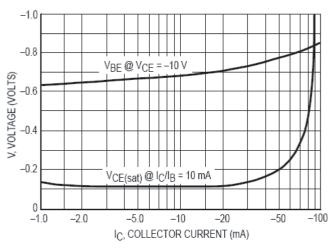


Figure 4. "On" Voltages

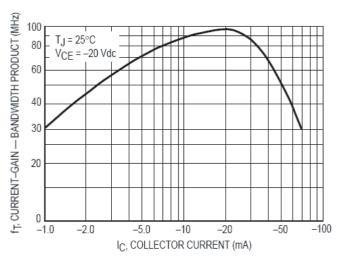


Figure 3. Current–Gain — Bandwidth Product

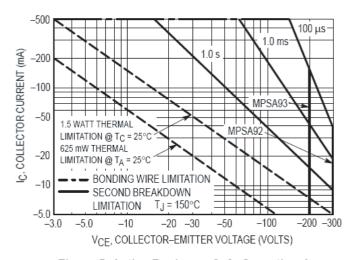


Figure 5. Active Region — Safe Operating Area

DISCLAIMER NOTICE

Rectron Inc reserves the right to make changes without notice to any product specification herein, to make corrections, modifications, enhancements or other changes. Rectron Inc or anyone on its behalf assumes no responsibility or liability for any errors or inaccuracies. Data sheet specifications and its information contained are intended to provide a product description only. "Typical" parameters which may be included on RECTRON data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. Rectron Inc does not assume any liability arising out of the application or use of any product or circuit.

Rectron products are not designed, intended or authorized for use in medical, life-saving implant or other applications intended for life-sustaining or other related applications where a failure or malfunction of component or circuitry may directly or indirectly cause injury or threaten a life without expressed written approval of Rectron Inc. Customers using or selling Rectron components for use in such applications do so at their own risk and shall agree to fully indemnify Rectron Inc and its subsidiaries harmless against all claims, damages and expenditures.

